Are Stannylenes Better Ligands than Phosphines?

Markus Ehses, Lothar Stahl, Volker Huch, Michael Veith* Institut für Anorganische Chemie, Universität des Saarlandes, Am Stadtwald, Geb. 23.1, 66123 Saarbrücken

Substitution of phosphine ligands by the isolobal cyclic amido-stannylene $[Sn(N^tBu)_2SiMe_2]$ (1)^[1] in the well-known Wilkinson catalyst $[Rh(PPh_3)_3(CI)]$ works straightforward.^[2] Depending on the stoichiometry, one or three of the phosphines are replaced yielding *cis*-[{Sn(N^tBu}_2SiMe_2)_2Rh(PPh_3)_2(CI)] (2), in which two stannylene ligands 1 are inserted into the rhodium-chlorine bond (fig. 1), or $[Rh{Sn(N^tBu}_2SiMe_2)_5(CI)]$ with a trigonal bipyradmidal RhSn₅ core. In hydrosilylation reactions, **2** shows much higher TOF's compared to Wilkinson's catalyst.^[3]

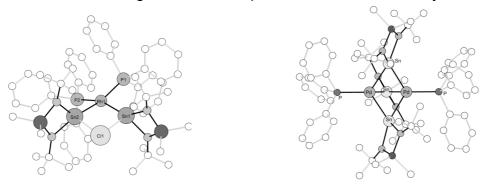


Fig. 1: Molecular Structures of 2 and 3.

A potential enantioselective catalyst is provided by the reaction of **1** with $[Pd(PPh_3)_4]$: A chiral dipalladium complex $[{(Ph_3P)Pd}_2(\mu-{Sn(N^tBu)_2SiMe_2}_3]$ (**3**) is formed.^[4] The stannylenes exhibit a pronounced tendency to occupy the bridging position, in which they adopt a paddle-wheel like arrangement (fig. 1). The complex can be described as a trigonal bipyramidal cluster with local C₃ symmetry.

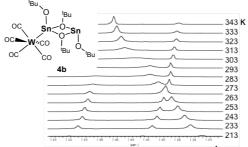


Fig. 2: Temperature dependent ¹H-NMR of **4b**.

However, due to the high sensitivity of the tin-nitrogen bond, we started to investigate the molecular characteristics of alkoxy-stannylene complexes. The mono-coordinated complexes [$\{(OC)_5M\}$ $\{Sn(O^tBu)(\mu-O^tBu)\}_2$] (M = Cr, W, **4a**, **b**) show a distinct dynamic behaviour: with increasing temperature, first three, and then four O^tBu substituents exchange rapidly on the NMR time scale (fig. 2).^[5]

References

- [1] M. Veith, Angew. Chem. 1975, 87, 287-288.
- [2] M. Veith, L. Stahl, V. Huch, Inorg. Chem. 1989, 28, 3278-3280.
- [3] H. Brunner, *personal communication*.
- [4] M. Veith, A. Mueller, L. Stahl, M. Nötzel, M. Jarczyk, V. Huch, *Inorg. Chem.* **1996**, *35*, 3848-3855.
- [5] M. Veith, M. Ehses, V. Huch, New J. Chem. 2005, 29, 154-164.